Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia.

نویسندگان

  • K O Lim
  • E Adalsteinsson
  • D Spielman
  • E V Sullivan
  • M J Rosenbloom
  • A Pfefferbaum
چکیده

OBJECTIVE To apply in vivo proton magnetic resonance spectroscopy imaging estimates of N-acetylaspartate (NAA), a neuronal marker, to clarify the relative contribution of neuronal and glial changes to the widespread volume deficit of cortical gray matter seen in patients with schizophrenia with magnetic resonance images. METHODS Ten male veterans meeting criteria of the DSM-IV, for schizophrenia and 9 healthy age-matched men for comparison were scanned using spectroscopic, anatomical, and field-map sequences. Instrument and collection variables were standardized to allow an estimation of comparable values for NAA, choline, and creatine for all subjects. Metabolite values from each voxel on 3 upper cortical slices were regressed against the gray tissue proportion of that voxel to derive estimates of gray and white matter NAA, creatine, and choline concentrations. RESULTS The volume of cortical gray matter was reduced in patients with schizophrenia, but NAA signal intensity from a comparable region was normal. In contrast, the volume of cortical white matter was normal in patients with schizophrenia, but NAA signal intensity from a comparable region was reduced. CONCLUSIONS The lack of reduction in gray matter NAA signal intensity suggests that the cortical gray matter deficit in these patients involved both neuronal and glial compartments rather than a neurodegenerative process in which there is a decrease in the neuronal relative to the glial compartment. Reduced white matter NAA signal intensity without a white matter volume deficit may reflect abnormal axonal connections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton magnetic resonance spectroscopy and thought disorder in childhood schizophrenia.

OBJECTIVE Although magnetic resonance spectroscopy has identified metabolic abnormalities in adult and childhood schizophrenia, no prior studies have investigated the relationship between neurometabolites and thought disorder. This study examined this association in language-related brain regions using proton magnetic resonance spectroscopic imaging ((1)H MRSI). METHOD MRSI was acquired bilat...

متن کامل

Relative concentrations of proton MR visible neurochemicals in gray and white matter in human brain.

The relative distributions of N-acetylaspartate (NAA) + N-acetylaspartylglutamate (NAAG), creatine + phosphocreatine (Cr/PCr), and choline (Cho) in the gray and white matter of human brain were determined by utilizing proton magnetic resonance spectroscopic imaging (SI). The SI data was processed using an automated spectroscopic image processing algorithm, and image segmentation was performed u...

متن کامل

In vivo brain concentrations of N-acetyl compounds, creatine, and choline in Alzheimer disease.

BACKGROUND Alzheimer disease (AD) and normal aging result in cortical gray matter volume deficits. The extent to which the remaining cortex is functionally compromised can be estimated in vivo with magnetic resonance spectroscopic imaging. OBJECTIVE To assess the effects of age and dementia on gray matter and white matter concentrations of 3 metabolites visible in the proton spectrum: N-acety...

متن کامل

Cerebral proton magnetic resonance spectroscopy of a patient with giant axonal neuropathy.

Magnetic resonance imaging of a girl with giant axonal neuropathy revealed a progressive white matter disease. In close agreement with histopathological features reported previously, localized proton magnetic resonance spectroscopy at 9 and 12 years of age indicated a specific damage or loss of axons (reduced N-acetylaspartate and N-acetylaspartylglutamate) accompanied by acute demyelination (e...

متن کامل

Diffusion Tensor Imaging, Structural Connectivity, and Schizophrenia

A fundamental tenet of the "disconnectivity" theories of schizophrenia is that the disorder is ultimately caused by abnormal communication between spatially disparate brain structures. Given that the white matter fasciculi represent the primary infrastructure for long distance communication in the brain, abnormalities in these fiber bundles have been implicated in the etiology of schizophrenia....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of general psychiatry

دوره 55 4  شماره 

صفحات  -

تاریخ انتشار 1998